{ "metadata": { "kernelspec": { "language": "python", "display_name": "Python 3", "name": "python3" }, "language_info": { "name": "python", "version": "3.7.12", "mimetype": "text/x-python", "codemirror_mode": { "name": "ipython", "version": 3 }, "pygments_lexer": "ipython3", "nbconvert_exporter": "python", "file_extension": ".py" }, "colab": { "name": "05_Representation_learning (1).ipynb", "provenance": [], "collapsed_sections": [], "toc_visible": true }, "accelerator": "GPU" }, "nbformat_minor": 0, "nbformat": 4, "cells": [ { "cell_type": "markdown", "source": [ "**Chapter 17 – Autoencoders and GANs**" ], "metadata": { "id": "p8OEWQEkn2xq" } }, { "cell_type": "markdown", "source": [ "_This notebook contains the sample from https://github.com/ageron/handson-ml2/ , https://github.com/fchollet/deep-learning-with-python-notebooks_ and https://github.com/probml/pml-book/tree/main/pml1" ], "metadata": { "id": "UFP_mZlGn2xs" } }, { "cell_type": "markdown", "source": [ "
\n",
" | \n",
" \n",
" | \n",
"